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The boundary correction for the Rayleigh-Darcy problem : 
limitations of the Brinkman equation 
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The no-slip condition on rigid boundaries necessitates a correction to the critical value 
of the Rayleigh-Darcy number for the onset of convection in a horizontal layer of 
a saturated porous medium uniformly heated from below. It is shown that the use 
of the Brinkman equation to obtain this correction is not justified, because of the 
limitations of that equation. These limitations are discussed in detail. An alternative 
procedure, based on a model in which the porous medium is sandwiched between two 
fluid layers, and the Beavers-Joseph boundary condition is applied a t  the interfaces, 
is described, and an expression for the correction is obtained. It is found that the 
correction can be of either sign, depending on the relative magnitudes of the 
parameters involved. 

1. Introduction 
Rudraiah, Veerappa & Balachandra Rao (1980) have claimed that ' to understand 

the onset of convection in a porous medium made up of sparse distribution of particles 
one has to take into account the viscous shear, however small it may be, in addition 
to the Darcy resistance. In  other words, instead of considering only the potential 
nature of the Darcy equation, one has to consider also the boundary layer type of 
equation as postulated for the first time by Brinkman [1947a] (hereafter called the 
Brinkman model) for which a rigorous theoretical justification was given later by Tam 
[1969] and Lundgren [1972].' Their point is that a t  a rigid boundary the no-slip 
condition must be applied, and this is inconsistent with the use of the usual Darcy 
equation. In  the present paper we point out the dangers of using the Brinkman 
equation in the way which Rudraiah et al. did so. Later we indicate an alternative 
way of dealing with the no-slip condition, but first we take a critical look at the 
Brinkman model. 

2. The Brinkman equation in its original context 
Brinkman (1947 a) considered slow steady flow through a porous bed of spherical 

particles with the porosity sufficiently large for one to take the equation for flow past 
an individual sphere to be 

(2.1) I(. 

K 

where v and p are the fluid velocity and pressure, ,u is the viscosity of the fluid and 
,G is an effective viscosity. For an incompressible fluid, v satisfies 

v . v  = 0. (2.2) 

vp  = - - v + ~ V 2 v ,  
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Brinckman solved (2.1) and (2.2) subject to the appropriate boundary conditions 
(v = 0 on the surface of the sphere, and v = v, at large distances from the sphere). 
He calculated the drag on the sphere to be mD,, where D, = 67rkv,a is the Stokes 
drag on a sphere of radius a ,  and m = 1 +ha+fh2a2, where A = (p /Kk) i .  He then 
identified vo with the unidirectional mean filter velocity and equated the total force 
on the spheres contained in a column of the medium to the Darcy drag on that column. 
He thereby obtained a relationship between a and the porosity q, and hence an 
expression for the multiplication factor m which can be written in the form 

This requires that the permeability be given by 

K = Ko/m, 

where KO is the value of K in the limit as 7 1. According to (2.3), rn becomes 
unbounded as q + f, and hence we must assume that f < q < 1.  Brinkman showed 
that (2.4) was in qualitative agreement with an experimental relation (Carman- 
Kozeny) which is now widely accepted, namely 

K =  d; r3 
180( 1 - ‘ 

According to Lundgren (1972), Brinkman should have identified v, not with the 
mean filter velocity, but rather with that velocity divided by the porosity. The effect 
of this change is that in (2.3) one should replace 1-11 by (1 - ~ ) / q  so that one then 
has 

and this requires that 0-6 < q < 1. Since most naturally occurring porous media have 
porosities less than 0-6 this restriction is indeed restrictive. 

Brinkman’s reasoning is heuristic. To describe the mean flow past a particular 
sphere he set up an effective medium, defined by the simplest differential equation 
that would reduce to Darcy’s law for uniform velocity, and to the equation of slow 
viscous flow for small-scale velocity variations. However, the work of Tam (1969), 
Lundgren (1972), Childress (1972) and Howells (1974) has left no doubt that the 
Brinkman model gives the correct first correction to the Stokes drag formula for 
sparse distributions of spheres. Howells noted that the difference between the 
distributed resistance of Brinkman’s model and the localized resistance of the actual 
system will not affect, to leading order in c (the mean volume fraction occupied by 
the spheres), the backflow set up by the fixed array as a reaction to the flow due to 
a test sphere. 

The question of whether one should put the effective viscosity ,Z equal to the fluid 
viscosity p, or to a viscosity that accounts for the concentration of the particles as 
Einstein’s correction does for dilute suspensions, was answered by Lundgren (1972). 
Brinkman took ,E = p, but Lundgren concluded that, if one interpreted v as the 
ensemble average of the velocity field and p as the mean static pressure in the fluid, 
then ,E/p was a function, whose value rose slightly above 1 as the porosity q decreased 
from unity, attained a maximum a t  about 7 = 0.8, and decreased rapidly when 

< 0.7. 
Experimental checks of Brinkman’s theory have been indirect and few in number. 
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Lundgren refers to measurements of flow through cubic arrays of spherical beads on 
wires by Happel & Epstein (1954) which agree quite well with the Brinkman formula 
for permeability as a function of porosity. 

It was pointed out by Tam (1969) that whenever the spatial length scale is much 
greater than l/al (where a1 is defined by p / K  = ,Ga:) the V2v term is negligible in 
comparison with the term linear in v, and the Brinkman equation reduces to the Darcy 
equation. Indeed, Levy (1981) has claimed that the Brinkman model really only holds 
for particles whose size is of order 7: if yl Q 1 is the distance between two 
neighbouring particles ; for larger particles the fluid filtration is governed by Darcy’s 
law and smaller particles do not influence the flow. 

I n  their discussion of flow through fibrous material, Spielman & Goren (1968, pp. 
280, 281) have made several pertinent comments. They write: ‘ . . . the Brinkman 
hypothesis implies that  the neighbouring fibers damp the ensemble average micro- 
scopic flow near the central fiber in precisely the same way that the fibers of the 
medium damp local flow through the medium when averaged over all conceivable 
fiber arrangements . . . [and so] the validity of Brinkman’s hypothesis may be 
expected to  be limited to conditions where the neighbouring fibers are distributed 
about the central fiber in approximately the same way as they are generally 
distributed in the medium. The hypothesis therefore breaks down when applied to 
media of sufficiently low porosity because the effect of many solid boundaries in the 
immediate proximity to the central object cannot be well described by a simple 
damping term with spatially and directionally constant damping coefficients. For the 
case of packed spheres, Brinkman [ 1947 b]  has shown that allowing a simple spatial 
variation of the damping coefficient enables extension of the model to low porosities 
but at the expense of introducing a semi-empirical fitting parameter . . . . 

‘Very near the central fiber where the fluid velocity is small, the damping forces 
will be negligible when compared with the viscous forces and the Brinkman equation 
reduces to Stokes’ equation of creeping flow. Far from the fiber, where velocity 
gradients vanish (on the average), [it] reduces to Darcy’s equation. Brinkman’s 
equation is seen to be the simplest postulate enabling these two limiting forms. I ts  
validity in the region where both terms are of similar magnitude is open to  question.’ 

3. The Brinkman equation applied to the Rayleigh-Darcy 
convection problem 

It appears that Katto & Masuoka (1967) were unaware of Brinkman’s work when 
they introduced their equation (which is equivalent to Brinkman’s with ,G = p )  in 
an ad hoc manner, ‘for the sake of convenience’. The Brinkman equation is a 
convenient linear equation containing a parameter (the permeability K )  such that 
the equation reduces to the Navier-Stokes equation as K + co and to the Darcy 
equation as K + 0. Katto & Masuoka found that the Darcy equation was applicable 
if K/12 < lop3, where 1 is the layer depth. Walker & Homsy (1977) calculated the 
critical Rayleigh number against K/12 for the case of conducting no-slip boundaries. 
They made no effort to justify their equations of motion, other than calling them 
‘ Darcy-Brinkman-Boussinesq equations ’. 

Rudraiah et al. (1980) have adopted without questioning the Katto-Masuoka 
version of the Brinkman equation, and have applied it to the study of the onset of 
convection with nonlinear basic temperature profiles. It is pertinent to  look at their 
results for the special case of a linear temperature profile for the situation where both 
boundaries are rigid and subject to constant heat flux. With the Rayleigh-BBnard 
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number R defined in the usual way for a viscous fluid (see (5.23) below) they calculate 
the critical value of R to be 

R, = 720+ 17.1412/K. (3.1) 

When K 00, this gives R, -+ 720, the well-known critical value for the viscous-fluid 
problem. However, with K -+ 0 i t  yields the result (K/Z2) R, -+ 17-14. We recognize 
that (K/12) R is identical with the Rayleigh-Darcy number R,, and we recall that 
for the case of impermeable boundaries at constant heat flux the critical value R,, 
is 12. One would expect the value 17-14 to be in error by a few per cent, since Rudraiah 
et al. used a one-term Galerkin approximation in their calculation, but the discrepancy 
between 17.14 and 12 is far too large to be acceptable. One would expect that the 
fact that the boundaries are rigid rather than stress-free, so that the non-slip 
requirement is imposed, would lead to a small correction to the value of R,, if the 
layer depth is large in comparison with the pore-size, because in this situation the 
Darcy equation should be applicable everywhere except in a narrow boundary layer 
near the rigid boundaries. For example, in the heat-transfer experiments of Elder 
(1967), in which the boundaries were rigid (and a t  constant temperature in this case), 
the experimental value of R,, agreed with the theoretical value to well within the 
10 yo estimated error of measurement, so that the boundary-layer correction could 
not be larger than about 10 %. We may conclude that i t  is not always justifiable to 
use the Brinkman equation within the bulk of a porous medium whose porosity is 
not close to unity. This leaves still open the question of whether the Brinkman 
equation is applicable in regions close to the boundaries. 

4. Relationship between the Brinkman equation and the 
Beavers-Joseph boundary condition 

Beavers & Joseph (1967), denoted below by BJ. This condition can be written as 
Soon we will be making use of an empirical boundary condition proposed by 

Here it is supposed that there is unidirectional flow in the x-direction, parallel to the 
plane y = 0. The region y > 0 is occupied by fluid, and the region y < 0 is occupied 
by a porous medium saturated by that fluid, while u and u, are the velocity in the 
fluid and the seepage velocity (mean filter velocity) in the porous medium, 
respectively. It is understood that, in (4.1) u and aulay are evaluated at y = 0 + , while 
u, is evaluated at asome small distance from the plane y = 0, so there is a thin layer 
just inside the medium over which the transition from to  u, takes place (see 
figure 1 of BJ).  The quantity a is a dimensionless quantity, independent of the 
viscosity of the fluid but depending on the material parameters that characterize the 
structure of permeable material within the boundary region. In  their experiments B J  
found that a had the values 0.78,1-45 and 4.0 for Foametal having average pore sizes 
0.06, 0-034 and 0-045 inches respectively, and 0.1 for Aloxite with average pore size 
0.013 or 0.027 in. The original experiments of B J  were not conclusive, but more 
evidence for the correctness of their boundary condition was provided by Beavers, 
Sparrow & Magnuson (1970) and Beavers, Sparrow & Masha (1974). Some theoretical 
support for the B J  condition is given by the results of Taylor (1971) and Richardson 
(1971) based on an analogue model of a porous medium, and by the statistical 
treatment of Saffman (1971). The latter pointed out that  the precise form of the BJ 
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condition was special to  the planar geometry in the situation considered by BJ,  and 
in general was not correct to order K .  Saffman showed that on the boundary 

K& au 
u = -- +O(K) ,  a an 

where n refers to the direction normal to the boundary. (In (4.1) u, is O(K) and may 
be neglected if one wishes.) Jones (1973) assumed that the B J  condition was 
essentially a relationship involving shear stress rather than just velocity shear. On 
this view (4.1) would generalize to  

au av a 
- + - = -(U-U,), a y  ax K; (4.3) 

where u = (u ,  v ,  w). As far as the author is aware, the formula (4.3) has not been 
confirmed. The results obtained in the present paper and in Nield (1977) do not depend 
on the choice between (4.1) and (4.3), and hence we use the simpler version, namely 
(4.1). (The two-layer Convection problem with conducting boundaries would provide 
a test case, because convection would occur a t  finite rather than zero wavenumber, 
and the term &/ax would no longer be zero.) The B J  condition has been used, with 
apparent success, by a number of authors in their discussion of porous journal 
bearings and squeeze films. 

Our present interest is centred on the observation by Taylor that the B J  boundary 
condition can be deduced as a consequence of the use of the Brinkman equation. This 
idea was developed in detail by Neale & Nader (1974), who showed that in the problem 
of flow in a channel bounded by a thick porous wall one gets the same solution with 
the Brinkman equation as one gets with the Darcy equation plus the BJ boundary 
condition, provided that one identifies a with (,.4/,u)g. The successful use of the 
Brinkman equation here is apparently due to the fact that the velocity within the 
porous medium is constant except in the region close to  the boundary, and thus the 
Laplacian term is zero except in that region. The lack of success with the Brinkman 
equation for the Rayleigh-Darcy problem seems to be due to  failure to  take explicit 
account of the fact that the neighbourhood of the boundary is a distinguished region. 

5. A layered model 
We make a fresh start on the convection problem and suppose that we have a 

porous-medium layer which is sandwiched between two fluid layers, the whole 
sandwich lying between two rigid horizontal boundaries. For convenience of analysis 
we apply constant-heat-flux boundary conditions. The problem is thus closely similar 
to that treated by Nield (1977), so we merely have to modify the analysis presented 
in that paper. 

We choose Cartesian coordinates with the z-axis vertically upwards. We suppose 
that the porous medium occupies the region -d, < z < d, and that fluid, identical 
with that saturating the medium, occupies the regions d, < z < d,+d and 
- (d, + d )  < z < - d,. We thus have a porous layer of thickness 2d,  bounded by fluid 
layers, each of thickness d. The situation is thus similar to that investigated by 
Masuoka (1974), but, whereas he treated a thin layer of porous medium between two 
thick layers of fluid, we are interested in the situation where a thick layer of porous 
medium lies between very thin layers of fluid, so that d is of the order of magnitude 
of the particle size. 
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In  the fluid, the governing equations (for steady flow) are 

v . u  = 0, (5.1) 
1 

Po 
u.Vu  = - -VP+vV2u-g[1-a*(T-T,)]e , ,  

u . VT = K V ~ T ,  

while in the porous medium we have 

v . u ,  = 0, (5.4) 

0 = --VP,- -u,-g[l-a*(T,-T,)]e, ,  (5 .5)  Po K 

(5.6) 

1 V 

U ,  . VT, = K ,  v2T,. 

Here, u, T and P are the velocity, temperature and pressure in the fluid, po is the 
fluid density a t  temperature T, (a standard temperature), v = ,u/po, where ,u is the 
dynamic viscosity, u* is the volume-expansion coefficient, while K = k /poe ,  where k 
is the thermal conductivity and c the specific heat (at  constant pressure) of the fluid. 
Similarly u,, T, and P, are the seepage velocity, temperature and pressure in the 
porous medium, k ,  the average thermal conductivity of the medium, and K the 
permeability. We take T, as the temperature a t  z = 0, and suppose that the lower 
and upper boundaries are a t  temperatures T L  and Tu respectively. Then, by 
symmetry, we have To = +(TL+ Tu). 

In the steady state we have the solution 
- 

u = 0, T = T E Tu-p(z-d,-d),  P = P ,  (5.7) 

U ,  = 0, T = T, E T , - ~ , x ,  P, = P,, (5.8) 
- 

where p, prn are the temperature gradients in the fluid and medium respectively. 
Continuity of temperature and heat flux across an interface between fluid and medium 
requires that 

From these equations we deduce that 

Tu+/3d = T,-p,d,, k/3= kmp,. 

We now suppose that the steady-state conduction solution 
define the perturbation variables 

(5.9) 

is perturbed, and we 

- - - 
0 = T - T ,  p = P - P ,  0, = Tm-Pm, p ,  = P,-P,. 

The linearized perturbation equations are (5.1), (5.4) together with 

1 
-Vp = vV2u+a*g8e,, (5.10) 
Po 

(5.11) 

1 V 
-Vp, = - -u,+a*g~,e, ,  (5.12) 

(5.13) 

p W  + Kv28 = 0, 

PO K 

pm w, + K, vv, = 0, 

where u = (u , v ,  w), u, = (u,, v,, w,). 
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We have the following boundary conditions. 

- 0. = o ,  -- w = o ,  - 
ae 
aZ 

At z = dm+d: aw 
aZ 

At z = a,: 
w = wm, 

A t z = O :  

(5.14a, b ,  c) 

(5.14d,e) 

(5.14f) 

Conditions (5.14i, j) hold because of the symmetry of the problem. The remaining 
conditions (5.14) are as in Nield (1977). 

We now put the equations in non-dimensional form by writing 

K P K  1 u = -u', 8 = pas', (x,y,z-d,) = d(d,y',z'), p = z p ' ;  a 
Km , I  - P K m  

dm 
= c u m ,  8, = Pmdm@&, (xm, Ymj Zm) = dm(xm, Ym, z&)> p m  - -Pm. K 

(5.15) 

Substituting in the various equations, and dropping primes, we have the following. 
F o r O G z G l :  v . u = o ,  (5.16) 

Vp = V2u+ RBe,, (5.17) 

(5.18) w+v2e  = 0. 

For 0 < z, G 1 ; vm.um = 0, 

w,+vke, = 0. 

V, p m  = - urn + E m  e m  ezm, 

The boundary conditions become as follows. 
O n z = 1  

ae - 0. aw 
az aZ w = o ,  -=o ,  -- 

On z ,  = 0: 

(5.19) 

(5.20) 

(5.21) 

(5.22a, 6 ,  e) 

(5.22d, e )  

(5.223, j,) 
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Here 
(5.23) 

From (5.16), (5.17), (5.19), (5.20) we derive 

V4w+RV;B = 0,  (5.24) 

V&w,-R,V~mB, = 0. (5.25) 

We now solve (5.18), (5.21), (5.24), (5.25) subject to  (5.22). We proceeed as in Nield 
(1977), making the usual normal-mode expansion, expanding in terms of a2 (where 
a is the small horizontal wavenumber for the fluid region) and solving the order-a0 
and order-a2 equations. After routine algebra we end up with the criterion for the 
onset of convection in the form 

[(8 + 18A) p+ (15 + 456) p2] R 
+ [120(1 + A ) @ +  180d+60d/p+S-2{(30+ 120A)d-l+ (15+45A)d-lp-l}] R, 

= 360(i + A )  (p+a2)), (5.26) 
where A = &/a. 

We can check this result for two special cases. 
(i) For 2 + 0, we find that R = 720/24, as expected for a layer of viscous fluid, of 

depth 2d, between two rigid boundaries. 
(iii) Ford -+ co, we find that R, = 12/22, as expected for a layer of porous medium, 

of depth 2d,, between two impermeable boundaries. 
We are interested in the case where d is large, so that a thick layer of porous medium 

lies between two thin fluid layers. We define R* as the Rayleigh number appropriate 
for the case where the whole space is occupied by porous medium. i.e. R* is the 
Rayleigh-Darcy number for a layer of depth H = 2d, + 2d, so that 

R* = ga*(TL-Tu) KH 
VKm 

Then R and R, can be expressed in terms of R*. We have 

R, = i ~ * ( i  + d - y ( i  + L a - y ,  
R = : ~ * ~ d - 4 s - 2 ( 1  + d - y  (1 + Ea-1)-1 

(5.27) 

(5.28) 

(5.29) 

The instability criterion can now be written 

We compare this with the result R* = 12 which is obtained in the absence of the fluid 
layers (d -+ co). 

We note that S will normally be a small quantity. For example, if we adopt 
the Carman-Kozeny equation 

K =  (5.31) 

where 7 is the porosity and d, a mean particle diameter, and if we suppose that 
7 x 0 5 ,  then K x and so S2 x &,(dp/dm)2. If we now consider the case where 

v3d; 
1 8 0 ( 1 - ~ j ) ~ '  
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the fluid layers are of depth d,, then S2 w &aw2 and A x (20a)-l. Then, to first order 

(5.32) 

The coefficient of a-1 may be positive or negative, depending on the magnitudes of 
k,/k and a. It will be negative unless k differs greatly in magnitude from unity. The 
restricting effect of the no-slip condition, which on its own would lead to an increased 
critical Rayleigh number, is opposed by the freeing effect due to the fact that  there 
is less viscous dissipation in the fluid than in an equal volume of porous medium. 

More generally, we may set d = hKi, where h is a numerical parameters which can 
be chosen to  fit experimental results (which are lacking, at present). Then a-' = AS 

6h + (1 + 4A) h3 
4+4A 

and, to .order 8, 
(5.33) 

where A = (ha)-l. 

6. Conclusions and discussion 
We have shown that although the Brinkman equation is useful in the treatment 

of flow past a very sparse collection of obstacles, and for flows in porous media where 
the velocity is constant except in regions near boundaries, it is not generally 
applicable to flow in porous media. We have described an alternative method of 
dealing with boundary layers, involving a multilayered model. For the case of 
constant-heat-flux boundaries, the critical value of the Rayleigh-Darcy number R* 
is given by (5.30). This contains the layer depth ratio (2 which can be varied as desired. 
It is expected that for the case of other thermal boundary conditions the variation 
of R* with a, &, A and S will be qualitatively similar to that expressed by (5.30). In  
most practical situations the boundary-layer correction arising from the no-slip 
requirement will be small. 

We have been motivated mainly by the desire to deal with the restrictive effect 
of the rigid boundary and the associated increase in permeability near that  boundary. 
Also associated with this increase in permeability there will be a change in the thermal 
conductivity. This has been taken account of, and the effect depends on the value 

I n  our model the fluid layer is meant to  represent a geometrical void, an idealization 
modelling the reduced density of particles near a boundary. Ideally, we would like 
to  account for variations in the detailed statistics of small ensembles of particles, but, 
since we do not have a practical method for doing so, we have effectively slashed 
through the tangle, following the example of Alexander the Great in his treatment 
of the Gordian-knot problem. Experimental data on the particular aspect of the 
convection problem which we have discussed is lacking a t  present, but when some 
is available it may well be appropriate to consider a less crude approach. A possible 
step in that direction would be to use a Brinkman-type equation in the boundary 
region. 

In  this paper we have been largely concerned with a convection problem, but our 
discussion has implications for other problems involving fluid flow through a porous 
medium. One such problem has been considered by Nield (1983). 

of L. 

This paper was planned while the author was on Study and Research Leave 
from the University of Auckland, and enjoying the company of G. S. Beavers, 
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D. D. Joseph, T. S. Lundgren and their colleagues in the Department of Aerospace 
Engineering and Mechanics at the University of Minnesota. 
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